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Abstract

Benchmark datasets play a central role in the organization of machine learning1

research. They coordinate researchers around shared research problems and serve2

as a measure of progress towards shared goals. Despite the foundational role3

benchmarking practices play in the field, relatively little attention has been paid4

to the dynamics of benchmark dataset use and resuse within and across machine5

learning subcommunities. In this work we dig into these dynamics, by studying6

how dataset usage patterns differ across different machine learning subcommunities7

and across time from 2015-2020. We find increasing concentration on fewer and8

fewer datasets within task communities, significant adoption of datasets from other9

tasks, and concentration across the field on datasets that have been introduced by10

researchers situated within a small number of elite institutions. Our results have11

implications for scientific evaluation, AI ethics, and equity/access within the field.12

1 Introduction13

Datasets form the backbone of machine learning research (MLR). They are deeply integrated into14

work practices of machine learning researchers, operating as resources for training and testing15

machine learning models. Moreover, datasets serve a central role in the organization of MLR as a16

scientific field. Benchmark datasets establish stable points of comparison and coordinate scientists17

around shared research problems. Improved performance on these benchmarks is considered a key18

signal for collective progress; it is thus also an important form of scientific capital, sought after by19

individual researchers and used to evaluate and rank their contributions.20

Datasets also exemplify machine learning tasks, typically through a collection of input and output21

pairs [1]. By institutionalizing benchmark datasets, task communities implicitly endorse these data22

as meaningful abstractions of a task or problem domain. The institutionalization of benchmarks23

influences the behavior of both researchers and end-users [2]. Because advancement on institutional24

benchmarks is viewed as an indicator of progress, researchers are encouraged to make design choices25

to maximize performance to gain credibility for their work. Institutionalization also signals to industry26

adopters that models can be expected to perform in the real world as they do on the benchmark27

datasets. The close alignment of datasets with “real world” tasks is thus critical not just to accurate28

measurement of collective scientific progress, but safe, ethical, and effective deployment of models29

in the wild.30

Given their central role in the social and scientific organization of MLR, benchmark datasets have31

also become a central object of critical inquiry in recent years [3]. Dataset audits have revealed32

concerning biases that have direct implications for algorithmic bias and harms [4, 5, 6, 7]. Problematic33
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categorical schemas have been identified in popular image datasets, including poorly formulated34

categories and the inclusion of derogatory and offensive labels [8, 9]. Growing research into the35

disciplinary norms of dataset development have revealed concerning practices relating to dataset36

development and dissemination, such as unstandardized documentation and maintenance practices37

[10, 11, 12]. There is also growing concern regarding the limitations of existing datasets and standard38

metrics of evaluation for evaluating model behaviour in real-world settings and evaluating scientific39

progress in a problem domain [13, 14].40

Despite the increase in critical attention to benchmark datasets, surprisingly little empirical attention41

has been paid to patterns of dataset use and reuse across the field as a whole. In this work we dig42

into these dynamics, by studying how dataset usage patterns differ across different machine learning43

subcommunities and across time from 2015-2020 in the Papers With Code (PWC) corpus.1 More44

specifically, we study machine learning subcommunities that have formed around different machine45

learning tasks (e.g. Sentiment Analysis and Face Recognition) and examine: (i) the extent to which46

research within task communities is concentrated or distributed across different benchmark datasets,47

and (ii) patterns of dataset creation and movement between different task communites.48

Overall, we find that the majority of papers within most tasks prefer datasets that were originally49

created for other tasks over ones created explicitly for their own task, even though most tasks have50

created more datasets than they have imported. Consistent with this finding, we see increasing51

concentration on fewer and fewer datasets within task communities. Lastly, we find that these52

dominant datasets have been introduced by researchers at just a handful of elite institutions.53

The remainder of this paper is organized as follows. First, we motivate our research questions54

by underscoring the critical importance of benchmarks in coordinating machine learning research.55

Second, we describe our analyses on the PWC corpus, a catalog of datasets and their usage jointly56

curated manually by the machine learning community and algorithmically by Facebook AI Research.57

We then present our findings and discuss their implications for scientific validity, the ethical usage58

of MLR, and inequity within the field. We close by offering recommendations for possible reform59

efforts for the field.60

2 The scientific, social, and ethical, importance of benchmark datasets61

Following [1], we understand machine learning benchmarks as community resources against which62

models are evaluated and compared. Benchmarks typically formalize a particular task through a63

dataset and associated quantitative metric of evaluation. Benchmarking is the dominant paradigm64

for evaluation in MLR, and the field collectively views upward trends on benchmarks as noisy but65

meaningful indicators of scientific progress [2, 1, 15]. Over time, MLR has evolved strong norms66

to facilitate widespread benchmarking including the development of open-access datasets, formal67

competitions and challenges, and accompanying “black-box” software that allows researchers to test68

their algorithms on benchmark datasets with minimal effort.69

The establishment of benchmark datasets as shared resources for evaluation across the MLR com-70

munity has unique advantages for coordinating scientists around common goals. First, barriers to71

participation in MLR are reduced since well resourced institutions can shoulder the costs of dataset72

curation and annotation 2. Second, by reducing otherwise complex comparisons to a single agreed73

upon measure, the scientific community can easily align on the value of research contributions and74

assess whether progress is being made on a particular task. Finally, a complete commitment to75

benchmarking has allowed MLR to relax reliance on slower institutions for evaluating progress76

like peer-review or theoretical integration. Together, these advantages have contributed to MLR’s77

unprecedented transformation into a “rapid discovery science” in the past decade [16].78

While there are clear advantages to benchmarking as a methodology of comparing algorithms and79

measuring progress in a problem domain, there are growing concerns regarding benchmarking cultures80

in MLR which tend to valorize state-of-the-art (SOTA) results on established benchmark datasets over81

other forms of quantitative or qualitative analysis. The necessity of SOTA results on well established82

benchmarks for publication acceptance has been identified as a barrier to the development of new83

ideas [17] and there have been growing calls for more rigorous and comprehensive empirical analysis84

1paperswithcode.com
2However, machine learning model development still remains a resource intensive activity.
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of models beyond standard top-line metrics, including reporting model size, energy consumption,85

fairness metrics, and more [18, 19, 20, 21]. The standard benchmarking paradigm also contributes86

to underspecification challenges in ML pipelines since a given level of performance on a held out87

benchmark test set doesn’t guarantee a model has learned the appropriate causal structure of a problem88

[14]. In short, while community alignment on benchmarks and metrics can enable rapid algorithmic89

advancement, hyper focus on singular metrics at the expense of other more comprehensive forms of90

rigorous evaluation can lead the community astray and risk the development of models that poorly91

generalize to the real world.92

The MLR community has begun to reflect on the utility of established benchmarks in the field and their93

appropriateness for evaluative purposes. For example, the Fashion-MNIST dataset was introduced94

because MNIST is perceived to be over-utilized and too easy [22], and the utility of ImageNet — one95

of the most influential ML benchmark in existence — as a meaningful measure of progress has been96

a focus of critical examination in the past couple years [23, 24]. SOTA chasing concerns are also97

compounded by the great capacity ML algorithms have to be “right for the wrong reason” [25],98

enabling SOTA results that rely on “shortcuts” rather than learning the causal structure dictated by99

the task [13]. [26] suggests the NLP community may have been “led down the garden path” by100

over-focusing on “beating” benchmark tasks with models that can easily manipulate linguistic form101

without any real capacity for language understanding. Recent dataset audits have also revealed that102

established benchmark datasets tend to reflect very narrow — typically white, male, Western — slices103

of the world [4, 5, 6, 7]. Thus, over-concentration of research on a small number of datasets and104

metrics can distort perceptions of progress within the field and have serious ethical implications for105

communities impacted by deployed models. Despite these discussions, little empirical work has106

considered whether over-concentration of research on a small number of datasets is a systemic issue.107

This prompts our first research question:108

RQ1: How concentrated are machine learning task communities on specific datasets and has109

this changed over time?110

There are also growing concerns regarding the gap between benchmark datasets and the problem111

domains that they are being used to evaluate progress in. For example, [12] found that computer112

vision datasets tend to be developed in a manner that is decontextualized from a particular task or113

application area. Supposedly “general purpose” benchmarks are often valued within the field, though114

the precise bounds of what makes a dataset suitable for general evaluative purposes remains unclear115

[15]. These observations prompt our second research question:116

RQ2: How frequently do machine learning researchers borrow datasets from other tasks in-117

stead of using one created explicitly for that task?118

Despite widespread recognition that datasets are critical to the advancement of the field, slow careful119

dataset development is often undervalued and disincentivized, especially relative to algorithmic120

contributions [27, 12]. Given the high value the MLR community places on SOTA performance121

on established benchmarks, researchers are also incentivized to reuse recognizable benchmarks to122

legitimize their contributions. Moreover, dataset development is time and labor intensive, making123

large scale dataset development potentially inaccessible to lower-resourced institutions. These124

observations prompt our final research question:125

RQ3: What institutions are responsible for the major ML benchmarks in circulation?126

3 Data127

Our primary data source for this work is Papers With Code3 (PWC), an open source repository128

for machine learning papers, datasets, and evaluation tables created by researchers at Facebook AI129

Research. PWC is largely community contributed — anyone can add a benchmarking result or a task,130

provided the benchmarking result is published in a paper as pre-print, in a conference or a journal.131

Once tasks and datasets are introduced by humans, PWC scrapes ArXiv using keyword searches to132

find other examples of the task or uses of the dataset.133

We downloaded the complete PWC dataset on 06/16/2021 (licensed under CC BY-SA 4.0). In this134

study, we focus primarily on the “Datasets” archive, as well as papers utilizing those datasets. Each135

3www.paperswithcode.com
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dataset in the archive is associated with metadata such as the modality of the dataset (e.g., texts,136

images, video, graphs), the date the dataset was introduced, and the paper title that introduced the137

dataset (if relevant). At the time we found 4,384 datasets on the site and scraped 60,647 papers that138

PWC associates with those datasets using a PWC internal API.139

In PWC papers, benchmarks, and (by transitivity) datasets are associated with tasks. For this analysis140

we were constrained to the 46,668 papers that use a dataset and are labeled with a task (see Figure141

6 for a truncated histogram of usage across datasets). These papers collectively use 3,511 datasets.142

Studying the transfer of datasets between tasks imposes an additional constraint that we must know143

both the task of the paper that introduced the dataset (“the origin task”) and the task of the paper that144

used the dataset later in time (“the destination tasks"). For example, ImageNet [28], was introduced145

as a benchmark for Object Recognition and Object Localization (origin tasks), but is now regularly146

utilized as a benchmark for Image Generation (destination task) among many others.147

2,583 datasets on PWC were formally introduced in a paper affiliated with a task, utilized by 39,465148

unique papers. An additional 640 datasets were introduced in a paper, but not labeled with tasks.149

Two authors manually labeled 50 of these dataset papers with tasks (see supplemental spreadsheet150

tab “Manually Tasked Datasets” for justifications) allowing us to include another 17,219 utilizing151

papers. We do not utilize the remaining 590 datasets and 2790 utilizing papers (14%).152

PWC includes a taxonomy of tasks and subtasks but the graph is cyclic, making it hard to disen-153

tangle dataset transfer between broad tasks and finer-grained tasks (see data supplement tab “Task154

Relations”). For each transfer, we annotate both the transfer between the origin and destination,155

and the transfer between the origin’s parents and the destination’s parents. This approach allows156

us to accurately capture both dynamics between larger tasks (e.g., Image Classification and Image157

Generation), and between finer-grained tasks (e.g,. Image-to-Image Translation and Image Inpainting158

who are both children of Image Generation). Because we found dataset usages to be noisy (i.e., a159

paper would be associated with a dataset if the keyword appeared multiple times in the paper), we160

restricted each transfer to destination tasks that PWC had already associated with that dataset.161

Datasets for Analyses 1 and 2 (RQ1, RQ2): Because our annotation system double counts transfers162

of a single dataset across different levels of organization, we chose to focus exclusively on high-level163

transfers between 313 parent tasks. Because the metrics we use in the analyses (particularly Gini and164

Creation Ratio) are biased in small samples, we chose to focus only on parent tasks with more than165

the median number of 31 papers. This resulted in a final sample of 133 tasks with 47,607 collective166

uses and 924 unique datasets (see supplemental spreadsheet tab “List of Tasks”).167

Dataset for Analysis 3 (RQ3): To study the distribution of successful datasets across institutions,168

we linked datset-introducing papers to the Microsoft Academic Graph (MAG) [29]. Affiliation169

concentration analyses were performed on the 2,461 datasets with papers that had the last author170

affiliation annotated in MAG.171

4 Methods and Findings172

4.1 Analysis 1 (RQ1): Concentration in Task Communities on Datasets173

4.1.1 Methods174

To measure how concentrated task communities are on certain datasets (RQ1), we calculated the Gini175

coefficient across the distribution of observed dataset usages within each task. Gini is a continuous176

measure of dispersion in frequency distributions. The metric is frequently used in social science to177

study inequality [30]. The Gini score varies between 0 and 1, with 0 indicating that the papers within178

a task use all datasets in equal proportions, and 1 indicating that only a single dataset is used across179

all dataset-using papers. Gini is calculated as the average absolute difference in the usage of all pairs180

of datasets used in the task, divided by the average usage of datasets. Formally, if xi is the number of181

usages of dataset i out of all n datasets used in the task, then the Gini coefficient of dataset usage is,182

G =

n∑
i=1

n∑
j=1

|xi − xj |

2
n∑

i=1

n∑
j=1

xj

=

n∑
i=1

n∑
j=1

|xi − xj |

2n
n∑

j=1

xj

=

n∑
i=1

n∑
j=1

|xi − xj |

2n2x̄
(1)
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Because Gini can be biased in small samples [31], we use the the sample corrected Gini, Gs =
n

n−1G,183

and excluded tasks (or task-years when disaggregating by time) with fewer than 10 papers.184

Regression Model 1: In addition to descriptive statistics, we built a regression model to assess the185

extent to which observed trends in Gini from year-to-year could be attributable to confounds like186

task size, task age, or other task-specific traits at that time. Our outcome is Gs in each task year187

from 2015-2020 (Figure 7 shows PWC coverage is limited for papers published before 2015). Our188

predictors of interest are:189

1. Year (since we are interested in trends in concentration over time)190

2. CV, NLP, Methods (three dummy variables indicating whether the task belongs to the191

Computer Vision, Natural Language Processing, or Methodology categories in PWC).192

To absorb additional heterogeneity, we also included the following control covariates:193

1. Task size in number of dataset-using/introducing papers for that task in that year194

2. Task age (because younger tasks may have higher Gini coefficients)195

3. Random intercepts for each task (because we have repeated observations over time)196

Gini is bounded between 0 and 1 so we use beta regression [30], but apply the smoothing transforma-197

tion in [32] to deal with the occasional task-year where the Gini is 0. We use a fully restricted model198

with the following interactions:199

Beta(Gs) = α+ β1Year + β2Task Size + β3TaskAge + (2)
β4CV + β5NLP + β6Methods + β7Full size + (3)
β8CV*Year + β9NLP*Year + β9Methods*Year +

β10Year*Task Age *Task Size (4)

This model was favored over all simpler models on AICc.200

4.1.2 Findings201

Controlling for task age, task size, and task-specific effects, Model 1 finds significant evidence for202

increasing concentration in task communities for the full dataset over time, predicting a marginal203

increase in Gini of .065 from 2015-2020 (Figure 1 top green; Table 1). This trend is also visible in204

the overall distributions of Gini coefficients over this period (Figure 1 bottom). By 2020, the Gini205

coefficient for a task was .60. There are no statistically significant differences between Computer206

Vision and Methodology tasks compared to the full sample (Figure 1 top, Figure 5), but Model 1207

suggests increases in concentration are attenuated in 2019-2020 for Natural Language Processing.208

During these two years, the model predicts NLP concentrations to decrease by .013 while the full209

sample increases by .012.210

4.2 Analysis 2 (RQ2): Changes in Rates of Adoption and Creation of Datasets Over Time211

4.2.1 Methods212

We created two proportions to better understand patterns of dataset usage and creation within tasks as213

outcomes:214

Adoption Ratio =
# of Papers Using Datasets from Other Tasks

# of Papers Using Datasets from Other Tasks + # of Papers Using Datasets from This Task

Creation Ratio =
# of Datasets Created Within This Task

# of Datasets Created within this Task + # of Datasets Imported from Other Tasks
215

Aggregated Descriptive Analyses: We first computed these proportions for each of the 133 parent216

tasks aggregated across all years, and subsetted these by the “Computer Vision,” “Natural Language217

Processing,” and “Methodology” categories.218

Regression Models 2A & 2B: Because our outcomes are now ratios of “successful” counts out of219

“all” counts, they naturally follow a binomial distribution. We used a mixed effects logistic regression220

to model these outcomes with the same predictors as Model 1.221
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4.2.2 Findings222

The top row of Figure 2 shows a wide variance in adoption ratios in both the full sample and the223

subcategories. Within the full sample, more than half of task communities use adopted datasets 57.1%224

of the time. However, this number varies dramatically across the three PWC subcategories. In more225

than half of Computer Vision communities, authors adopt 71.7% of their datasets from a different226

task, while half of Natural Language Processing communities adopt datasets less than 28.3% of the227

time. Methodology tasks adopt datasets from other tasks at very high rates as well (76.0%).228

In the bottom row of Figure 2, we see a largely inverted trend. Of all unique datasets used in a task229

community, 66.7% are created specifically for that task in more than half of tasks. Within Computer230

Vision and Methods tasks, the median is lower at 58.9% and 63.3% with similar distributions across231

tasks. Most strikingly, 78% of datasets are created specifically for the task in more than half of NLP232

communities with a much tighter variance. We do note that there is a significant correlation between233

creation ratio and task size (Spearman’s ρ = .26 p = 0).234

Regression Models 2A and 2B do not find any trends in adoption or creation ratios over time (data235

not shown).236

Figure 1: Top: Predicted concentration on
datasets across task communities over time.
Gini predicted by Model 1 holding task size/age
to means. Green plots show the estimated effects
of the full dataset, other colors are fixed effects
for categories. 95% confidence intervals shown.
Bottom: Distributions of concentrations over
time. Higher Gini indicates greater concentration
on fewer datasets. We observe significant spread
of Gini across different task communities, with the
median trending upwards over time.

Figure 2: Adoption (top) and Creation (bottom) Ra-
tios for PWC parent Tasks . Full dataset in green,
tasks in the Computer Vision category in purple, Meth-
ods tasks in red, and Natural Language Processing tasks
in orange. Red dot and line in boxplot indicate median.
Width of violins indicates distribution of tasks.

237

4.3 Analysis 3 (RQ3): Concentration in Dataset-Introducing Institutions Over Time238

4.3.1 Methods239

To look at trends in Gini inequality across institutions and datasets over time for the larger set of240

dataset-using papers, we calculated the Gini coefficient Gs in each year for dataset usages by both241

dataset and by institution. We regressed this Gini on year, as well as the total number of papers used242

to estimate Gs, using a standard beta regression. We also mapped dataset-introducing institutions243

using the longitude and latitude coordinates provided for the first author’s institution on Microsoft244

Academic.245

4.3.2 Findings246

Overall, we find that widely-used datasets are introduced by only a handful of elite institutions (Figure247

3A). In fact, over 50% of dataset usages in PWC as of June 2021 can be attributed to just thirteen248

institutions. Moreover, this concentration on elite institutions as measured through Gini has increased249
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to the mid .80s in recent years (Figure 3B red). This trend is also observed in Gini concentration on250

datasets in PWC more generally (Figure 3B blue).251

Figure 3: Increases in concentration of dataset usages on institutions and datasets (non-task specific) over
time. A: Map of dataset usages per institution as of June 2021. Dot size indicates number of usages. Dot
color indicates whether the institution is for-profit or not-for-profit. Institutions accounting for 50%+ usages
labeled. B: Gini coefficient for concentration of dataset usages across the whole PWC dataset over time for both
institutions and datasets. Ribbons indicate 95% confidence intervals.

5 Discussion252

In this paper, we find that task communities are both heavily concentrated on a limited number253

of datasets, and that this concentration has been increasing over time (see Figure 1). Moreover, a254

significant portion of the datasets being used for benchmarking purposes within these communities255

were originally developed for a different task (see Figure 2). This result is striking given the fact that256

communities are creating new datasets — in most cases more than the unique number that have been257

imported from other tasks — but the newly introduced datasets are being used at lower rates. When258

examining PWC as a whole, we find that there is increasing inequality in dataset usage globally, and259

that more than 50% of all dataset usages in our sample of 28,749 were for datasets introduced by260

thirteen elite, primarily western, institutions.261

While striking, there are valid reasons to expect widespread adoption and concentration on key262

datasets. First, a certain degree of research focus on a particular benchmark is both necessary263

and healthy to establish the validly and utility of the benchmark — or in some cases contest these264

properties — and gain community alignment around the benchmark as a meaningful measure of265

progress. Second, the curation of large-scale datasets is not just costly in terms of resources, but may266

require unique or privileged data (e.g., annonymized medical records, self-driving car logs) accessible267

to only a few elite academic and corporate institutions. Nevertheless, the extent of concentration we268

observe poses questions relating to the scientific rigor and ecological validity of machine learning269

research and underscores benchmarking as a vehicle for inequality in the field. In the remainder of this270

section we discuss our findings in relation to these two broad themes and outline recommendations271

that can be enacted at an individual and institutional level. We close by discussing limitations of this272

analysis and outlining directions for future work.273

5.1 Scientific rigor and ecological validity of MLR274

Heavy concentration of research on a small number of datasets for each task community is a fairly275

unsurprising result given the value placed on SOTA performance in established benchmark datasets —276

a valuation incentives individual researchers concentrate efforts on maximizing performance gains on277

well established benchmarks. However, as discussed in Section 2, over-concentrating research efforts278

on established benchmark datasets risks distorting measures of progress. Moreover, as the rate of279

technology transfer has accelerated, benchmarks have been increasingly used by industry practitioners280

to assess the suitability and robustness of different algorithms for live deployment. This transition281

has transformed epistemic concerns about overfitting datasets into ethical ones. For example, critical282

research on face recognition and generation datasets, has repeatedly highlighted the lack of diversity283

in standard benchmark datasets used to evaluate progress [4], even as the technologies are applied284

in law enforcement contexts that adversely affect those populations [37]. Figure 4c shows the top285
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datasets in usage within the Face Recognition community. Here, we see a significant amount of high286

stakes reserch being concentrated on a small number of datasets, many of which contain significant287

racial and gender biases [4, 38]. An in depth examination of bias within the top benchmarks datasets288

in use within different task communities is outside the scope of this work. However, the systemic289

nature of bias concerns in ML datasets compounds the epistemic concerns of highly concentrated290

research.291

Our findings also indicate that datasets regularly transfer between different task communities. On the292

most extreme end, the majority of the benchmark datasets in circulation for some task communities293

were created for other tasks. For example, Figure 4 plots the dataset usages of Image Generation294

papers on PWC broken down by dataset name (Figure 4b) and origin task ( Figure 4a). We observe295

only one of the datasets heavily used in the Image Generation community was designed specifically296

for this task. The widespread practice of adopting established datasets to train and evaluate models297

in new problem domains isn’t inherently a problem. However, this practice does raise potential298

concerns regarding the extent to which datasets are appropriately aligned with a given problem space.299

Moreover, given the widespread prevalence of systematic biases in the most prominent ML datasets,300

adopting existing datasets, rather than investing in careful curation of new datasets, risks further301

entrenching existing biases.302

Our findings relating to creation and adoption rates are quite nuanced, and the extent to which high303

adoption rates raise significant concerns to ecological validity are yet to be determined. Furthermore304

we believe it is worth distinguishing between at least two forms of dataset adoption that seem to be305

conflated in the PWC data. On the one hand, we observe datasets that have been developed for one306

task be adopted and adapted in some form for a new task through, for example, the addition of new307

annotations. On the other hand, we observe some datasets being adopted whole cloth from one task308

community to another. Each of these forms of dataset adoption potentially raises unique concerns309

regarding the validity of the benchmark in a given context. That said, our results add empirical310

support to the growing body of scholarship calling for dataset development and use to be rooted in311

context [3, 12], particularly important for application oriented tasks.312

Our findings also compliment and support the growing calls to include forms of qualitative and313

quantitative evaluations beyond top-line benchmark metrics [18, 19, 20, 21]. Given the observed high314

concentration of research on a small number of benchmark datasets, we believe diversifying forms of315

evaluation is especially important to avoid overfitting to existing datasets and misrepresenting progress316

in the field. Reducing the near-singular emphasis on SOTA results on established benchmarks may317

also offer more voices the opportunity to shape the culture and trajectory of the field.318

5.2 Social inequality in MLR319

The extent of concentration we observe underscores that benchmarking is also a vehicle for inequal-320

ity in science. The prima facie scientific validity granted by SOTA benchmarking is generically321

confounded with the social credibility researchers obtain by showing they can compete on a widely322

recognized dataset, even if a more context-specific benchmark might be more technically appropriate.323

We posit that this dynamics creates a “Matthew Efffect” where successful benchmarks, and the elite324

(a) Origin tasks of datasets used by Image
Generation community.

(b) Datasets used by Image Generation
community.

(c) Datasets used by Face Recognition
community.

Figure 4: Top datasets used across Image Generation and Face Recognition task communities: (a) Origin
task communities of top Image Generation. Only 9.49% of Image Generation papers in PWC evaluate on
datasets developed for Image Generation. (b) Names of top Image Generation. Only one of the top datasets,
FFHQ [33], was developed for the task. (c) The small number of datasets in usage within the high stakes domain
of Face Recognition. Two of the datasets, MegaFace [34] and MS Celeb-1M [35], have been recently retracted,
the latter due to serious ethical violations [36].
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institutions that introduce them, gain outsize stature within the field. To the extent that benchmarks325

shape the types of questions that get asked and algorithms that get produced, current benchmarking326

practices thus offer a mechanism through which a small number of elite institutions, both academic327

and for-profit, can shape the agenda of the field. Moreover, because research trends influence broader328

public discourse, opinions, and potentially even policy decisions, this influence extends into the329

broader social world as well.330

The recently introduced NeurIPS Dataset and Benchmark Track is a clear example of an intervention331

that shifts incentive structures within the MLR community by rewarding dataset development and332

other forms of data work. We believe these sorts of interventions can play a critical role in incentiviz-333

ing careful dataset development that is meaningfully aligned with problem domains. However, our334

finding that a small number of well-resourced institutions are responsible for most benchmarks in335

circulation today has implications for data oriented interventions in the field. Our research suggests336

that simply calling for ML researchers to develop more datasets, and shifting incentive structures337

so that dataset development is valued and rewarded may not be enough to diversify dataset usage338

and diversify the perspectives that are ultimately shaping and setting MLR research agendas. In339

addition to incentivizing dataset development, we advocate for equity oriented policy interventions340

that prioritize significant funding for people in less resourced institutions to create high-quality341

datasets. This would diversify — from a social and cultural perspective — the benchmark datasets in342

rotation.343

5.3 Limitations and Future Work344

In this paper, we provide the first field-scale analysis on dataset usage in MLR. Because our findings345

rely on a unique community-curated resource, our findings are contingent on the structure and346

coverage of PWC. The crowdsourced taxonomy of parent-child task relations in PWC is both noisy347

and open to interpretation. We have included the full list of parent tasks used in our analysis in the348

supplementary material, as well as the parent/child relations. We focused our adoption and creation349

rate analyses on parent-to-parent transfers in an effort to curtail any concerns regarding arbitrariness350

of task boundaries for fine grained tasks.351

As with any dataset, PWC also reflects various forms of curatorial bias. To control for spurious labels352

of dataset usage, we conservatively only considered usages of a dataset valid if they shared a task353

label with the dataset. Our own curatorial decision influenced the final dataset as well. As noted354

in Section 3, there were also a large number of datasets that were not assigned an origin task. We355

manually assigned tasks to the top datasets (assignments and justifications for assignment included in356

Supplementary Material) from this set and dropped the remaining 14% of uses. Lastly, PWC is likely357

to reflect recency bias.358

Finally, we emphasize that our findings are highly nuanced. We report trends that our analysis359

revealed, but refrain from imposing normative judgements on many of these trends. For example, the360

high rates of adoption raise potential concerns and points to an important future area of examination.361

The mere fact that datasets travel between task communities is not necessarily problematic, and362

indeed the widespread sharing of datasets has been central to methodological advancements in the363

field. We hope this work will offer a foundation for future empirical work examining the details of364

dataset transfer and the context specific implications of our findings.365

6 Conclusion366

Benchmark datasets play a powerful role in the social organization of the field of machine learning. In367

this work, we empirically examine patterns of creation, adoption, and usage within and across MLR368

task communities. We find that benchmarking practices are heavily concentrated on a small number369

of datasets for each task community and heavily concentrated on datasets originating from a small370

number of well resourced institutions across the field as a whole. We also find that many benchmark371

datasets flow between multiple task communities and are leveraged to evaluate progress on tasks372

for which the data was not explicitly designed. We hope this analysis will inform community-wide373

initiatives to shift patterns of dataset development and use so as to enable more rigorous, ethical, and374

socially informed research.375
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A Appendix531

Table 1: "Exponentiated coefficients for fixed effects in Regression Model 1"
Term Estimate Std Error Statistic P-value

1 (Intercept) 1.21 1.22 0.96 0.34
2 Year 1.10 1.04 2.37 0.02
3 Task Size 2.73 1.16 6.63 0.00
4 Task Age 1.03 1.11 0.26 0.79
5 CV 0.96 1.21 -0.19 0.85
6 NLP 1.03 1.22 0.16 0.87
7 Methodology 0.68 1.21 -2.04 0.04
8 Year:Task Size 0.84 1.03 -5.95 0.00
9 Year:Task Age 0.98 1.02 -1.06 0.29

10 Task Size:Task Age 1.36 1.17 1.96 0.05
11 Year:CV 0.95 1.04 -1.33 0.18
12 Year:NLP 0.90 1.04 -2.57 0.01
13 Year:Methodology 1.06 1.04 1.48 0.14
14 Year:Task Size:Task Age 0.95 1.03 -1.80 0.07
15 SD(Task Random Intercepts) 1.66

Figure 5: Increases in concentration on datasets within task communities over time. Higher Gini coefficient
indicates greater concentration on fewer datasets. We observe significant spread of Gini across different task
communities, with the median trending upwards over time for all modalities. Green is the full dataset, other
colors indicate subsets of the data by PWC task category.
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Figure 6: Truncated distribution of usages per dataset in PWC. Usages measured conservatively by only
allowing usages from tasks the dataset was labeled for. 3760 datasets with less than 5 papers and 8 datasetwith
over 500 uses dropped for clarity. 8 datasets are Penn Treebank,CelebA, SQuAD, KITTI, MNIST, Cityscapes,
ImageNet, COCO.

Figure 7: Number of Papers in the Papers with Code Corpus. Full set of "Papers with Abstracts" on Papers
with Code as of June 2021. Total dataset size is 137,510 papers. Daily snapshots of this dataset are available at
github.com/paperswithcode.
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