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Introduction: An understanding of ctenophore biology is critical for reconstructing events that 
occurred early in animal evolution. The phylogenetic relationship of ctenophores (comb jellies) to 
other animals has been a source of long-standing debate. Until recently, it was thought that Porif-
era (sponges) was the earliest diverging animal lineage, but recent reports have instead suggested 
Ctenophora as the earliest diverging animal lineage. Because ctenophores share some of the same 
complex cell types with bilaterians (such as neural and mesodermal cells), the phylogenetic position 
of ctenophores affects how we think about the early evolution of these cell types.

Methods: We have sequenced, annotated, and analyzed the 150-megabase genome of the cteno-
phore Mnemiopsis leidyi. We have performed detailed phylogenetic analyses on these new data 
using both sequence matrices and information on gene content. We conducted extensive genomic 
inventories on signaling pathway components and genes known to be critical to neural and meso-
dermal cell types, among others.

Results: Our phylogenetic analyses suggest that ctenophores are the sister group to the rest of the 
extant animals. We fi nd that the sets of neural components present in the genomes of Mnemiopsis 
and the sponge Amphimedon queenslandica are quite similar, suggesting that sponges have the 
necessary genetic machinery for a functioning nervous system but may have lost these cell types. 
We also fi nd that, although Mnemiopsis has most of the genes coding for structural components of 
mesodermal cells, they lack many of the genes involved in bilaterian mesodermal specifi cation and, 
therefore, may have independently evolved these cell types.

Discussion: These results present a newly supported view of early animal evolution that accounts 
for major losses and/or gains of sophisticated cell types, including nerve and muscle cells. This 
evolutionary framework, along with the comprehensive genomic resources made available through 
this study, will yield myriad discoveries about our most distant animal relatives, many of which will 
shed light not only on the biology of these extant organisms but also on the evolutionary history of 
all animal species, including our own.
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The Genome of the Ctenophore
Mnemiopsis leidyi and Its Implications
for Cell Type Evolution
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Sequencing Program,6 Stephen A. Smith,7,8 Nicholas H. Putnam,5 Steven H. D. Haddock,4

CaseyW. Dunn,7 Tyra G.Wolfsberg,1 James C.Mullikin,1,6 Mark Q.Martindale,3 Andreas D. Baxevanis1*

An understanding of ctenophore biology is critical for reconstructing events that occurred early in
animal evolution. Toward this goal, we have sequenced, assembled, and annotated the genome of the
ctenophoreMnemiopsis leidyi. Our phylogenomic analyses of both amino acid positions and gene content
suggest that ctenophores rather than sponges are the sister lineage to all other animals. Mnemiopsis
lacks many of the genes found in bilaterian mesodermal cell types, suggesting that these cell types evolved
independently. The set of neural genes inMnemiopsis is similar to that of sponges, indicating that sponges
may have lost a nervous system. These results present a newly supported view of early animal evolution
that accounts for major losses and/or gains of sophisticated cell types, including nerve and muscle cells.

The phylogenetic position of ctenophores
presents a challenge to our understand-
ing of early animal evolution, especially

as it relates to complex features such as cell types.
The stark difference between the body plans
of ctenophores and that of all other animals
makes comparisons inherently difficult. Genomic
sequencing of animals (1–4) and their closest
relatives (5) provides invaluable insight into
the molecular innovations contributing to the
morphological diversity exhibited among modern-
day animals. The vast majority of sequenced ani-
mal genomes are from Bilateria, the clade that
includes most animal species (including hu-
mans and traditional model systems). Three of the
four nonbilaterian metazoan lineages—Porifera
(sponges), Placozoa, and Cnidaria (for example,
sea anemones, corals, hydroids, and jellyfish)—
have at least one species with a sequenced ge-
nome. The absence of a complete genome sequence
from the fourth nonbilaterian metazoan lineage,
Ctenophora (or comb jellies), has made it dif-
ficult to resolve the earliest evolutionary events
in the animal tree of life and reconstruct the likely

gene inventory of the most recent common an-
cestor of animals.

Ctenophores are gelatinous marine animals
characterized by eight longitudinal rows of cil-
iated comb plates that run along their oral-aboral
axis (Fig. 1, A to C). Their bodies consist of an
inner gastrodermal layer and an outer epidermal
layer separated by a mesoglea. The muscular sys-
tem, deployed in discrete regions of the body (for
example, in the body wall, pharynx, and tenta-
cles), is composed almost exclusively of smooth
muscle cells; however, sarcomeric muscles have
been reported in a single ctenophoran species (6).
The ctenophore nervous system includes the ap-
ical sensory organ, a peripheral subepithelial nerve
net, neurons that run through the mesoglea, and
nerves associated with the tentacles. Most cteno-
phores, unlike all other animals, have specialized
adhesive cells called colloblasts that are involved
in prey capture. Most species are hermaphroditic
and capable of self-fertilization. Fertilized eggs
undergo a highly stereotyped ctenophore-specific
cleavage program (Fig. 1, D to M), with embryo-
genesis in most species leading to a free-swimming
cydippid stage that displaysmost of the features of
the adult body plan (that is, development is direct).

Mnemiopsis leidyi is a lobate ctenophore na-
tive to the coastal waters of the western Atlantic
Ocean. This species has recently invaded theBlack,
Caspian, and North Seas, causingmajor econom-
ic and ecological impact to native species in those
areas.M. leidyi has been used effectively to study
regeneration (7), axial patterning (8, 9), and bio-
luminescence (10–12). In addition, a cell lineage
fatemap (13–15), aswell as resources for collecting
and spawning, has been established (16), pro-
moting M. leidyi as a leading model for evolu-
tionary and developmental studies.

The phylogenetic relationship of ctenophores
to other animals has been a source of long-standing

debate. The group lacks a reliable fossil record,
and, on the basis of morphological features, cteno-
phores have been assigned various positions in
animal phylogeny, including as sister to cnidar-
ians in a clade called Coelenterata (sometimes
called Radiata) (Fig. 2A) and as sister to Bilateria
(Fig. 2B). Phylogenetic analyses of ribosomal
RNA show little or no support uniting ctenophores
with cnidarians or bilaterians and have tended to
place ctenophores sister to a clade that includes all
animals besides Porifera (Fig. 2C). Phylogenomic
studies have also produced conflicting results, with
a series of multigene analyses placing ctenophores
sister to all other metazoans (Fig. 2D) (17, 18),
and another, based primarily on ribosomal pro-
teins, supporting the Coelenterata hypothesis (Fig.
2A) (19). Yet another study, also based primarily
on ribosomal characters but with expanded taxon
sampling, upheld the relationship of ctenophores
as sister to all metazoans except Porifera (similar
to Fig. 2C) (20). On the basis of its simple mor-
phology, it has been suggested that Placozoa is
the sister group to all animals (Fig. 2E) (21).
Ctenophores have also been placed in a clade of
nonbilaterian animals called “Diploblastica,” on
the basis of a curated set of nuclear and mitochon-
drial proteins and a small morphological matrix
(Fig. 2F) (22). The most recent analyses of the
placement of sponges and ctenophores indicated
that supermatrix analyses of the publicly availa-
ble data are sensitive to gene selection, taxon sam-
pling, model selection, and other factors (23). The
inconsistency of reports about the phylogenetic
position of ctenophores (table S1) has made it
difficult to evaluate morphological, developmen-
tal, and experimental data involving these animals
in an evolutionary context, complicating efforts
to understand the early evolution of animals.

Genome Sequencing and Assembly
Genomic DNA was isolated from the embryos
of two self-fertilized adultM. leidyi collected in
Woods Hole, Massachusetts. DNA from one em-
bryo pool was used to construct a library for
Roche 454 sequencing.We generated 7.3 million
raw reads, which yielded 2.5 Gb of sequence.
Using the Phusion assembler (24), we assembled
these data into 24,884 contigs, constituting 150Mb
of sequence and providing roughly 12-fold cov-
erage of the genome. DNA from the other embryo
pool was used to create two mate-pair libraries
for Illumina GA-II sequencing, one with a 3-kb
insert and the other with a 4-kb insert. After du-
plicate read-pairs were removed, 4.2 million and
2.6 million pairs remained for the 3- and 4-kb
insert libraries, respectively. These reads were used
to construct scaffolds of the original set of Roche
454 contigs. The final assembly consists of 5100
scaffolds, resulting in 160-fold physical coverage
and an N50 of 187 kb (supplementary materials).
To test the accuracy and completeness of our
assembly, we aligned 99.4% of 15,752 public
expressed sequence tags (ESTs) to our assembly.
The average coverage of each alignable EST,
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as determined by baa.pl (25), was 98.2%. In
94.8% of cases, a single ESTmapped completely
to a single scaffold. These numbers suggest that
the assembly is both complete and accurately
assembled.

Characteristics of the M. leidyi Genome
TheM. leidyi genome is among the smallest 7%
of genomes when compared with those cataloged
in the Animal Genome Size Database (26) and is
densely packed with gene sequences. It encodes
16,548 predicted protein-coding loci, whichmake
up 58% of the genome, and we conservatively as-
sign 44%of these gene predictions into homology

groups with non-ctenophores. The average length
of an unsplicedM. leidyi transcript is 5.8 kb. Eight
percent of predicted genes are embedded within
other genes. This number of nested intronic genes
is high compared to other genomes (table S2), but
may be inflated owing to a subset of these being
alternatively expressed exons. The level of repeti-
tive sequence in the M. leidyi genome is low to
moderate, as compared to othermetazoans (tables
S3 and S4); this has made it possible to produce a
high-quality genome assembly based on paired-
end and mate-pair sequencing alone. Additional
characteristics of this genome are presented in
tables S5 to S10.

Phylogenetic Position of M. leidyi
The availability of the complete genomeofM. leidyi
has allowed us to improve on the ctenophore
sampling used in previous phylogenomic analyses
of gene sequence evolution.We assessed two data
matrices that differ in breadth of taxon sampling
and fraction of missing data: a “Genome Set” that
includes only data from complete genomes (13 ani-
mals, 19.6%missing data) and an “EST Set” that
includes partial genomic data frommany taxa (58
animals, 64.9% missing data). We analyzed both
matrices by using maximum-likelihood [with the
GTR+G model as implemented in RAxML (27)]
andBayesian [with theCATmodel as implemented
in PhyloBayes (28)] methods. To understand the
effect of outgroup selection on our ingroup topol-
ogy,we included four different sets of nonmetazoan
outgroups (table S11) in each combination ofmeth-
od and matrix. This multifactorial strategy yielded
a total of 16 analyses (Table 1).

We found no support in any of these analyses
for Coelenterata (Cn,Ct), Diploblastica (Bi,), or
Placozoa being the sister lineage to the rest of
animals (Tr,) (Table 1 and fig. S1). We recovered
broad support for a sister relationship between
Cnidaria and Bilateria (Cn,Bi) and for a clade
of Placozoa, Cnidaria, and Bilateria (Tr,Cn,Bi).
Maximum-likelihood analyses support the place-
ment of Ctenophora as sister group to all other

Bi
Cn

(Cn,Ct) (Ct,Bi) (Po,) (Ct,) (Tr,) (Bi,)

Ct
Tr
Po

Bi
Ct
Cn
Tr
Po

Bi
Cn
Tr
Ct
Po

Bi
Cn
Tr
Po
Ct

Bi
Cn
Ct
Po
Tr

Bi
Cn
Ct
Po
Tr

A B C D E F

Fig. 2. Previously proposed relationships of the five deep clades of animals. The label at the
bottom of each pane corresponds to the header of Table 1. (A) Coelenterata hypothesis. (B) Ctenophora as
sister to Bilateria. (C) Porifera as sister group to the rest of Metazoa. (D) Ctenophora as sister group to the
rest of Metazoa. (E) Placozoa as sister group to the rest of Metazoa. (F) Diploblastica hypothesis. We see no
support in any of our analyses for the hypotheses in (A), (E), and (F) and very little support for (B) (see
Table 1). Ct, Ctenophora; Po, Porifera; Tr, Placozoa; Cn, Cnidaria; Bi, Bilateria.

Fig. 1. M. leidyi life history and anatomy. (A) Adult M. leidyi (about 10 cm
long). (B) Close-up view of comb rows. (C) Aboral view of cydippid stage. (D) One-
celled fertilized embryo. (E toH) Early cleavage stages. (I) Gastrula stage. (J toM)

Later development ofM. leidyi embryo shown oral side down. Embryos are about
200 mm. See the supplementary materials for a more detailed description of the
ctenophore body plan. [Photo credit for (A): courtesy of Bruno Vellutini]
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Metazoa (Ct,) regardless of data matrix used
(Fig. 3). The Bayesian analysis of the genome
data set strongly supports a clade of Ctenophora
and Porifera (Ct,Po) as the sister group to all other
Metazoa. This relationship also receives some sup-
port in our maximum likelihood trees, and we
suspect that the result is due to poor taxon sampling
in the Genome Set. However, until there are more
complete genomes available to test this hypothesis,
this relationship cannot be completely dismissed.
Despite an average run time of 205 days per run,
none of the Bayesian analyses on the EST data
set converged (maxdiff > 0.3). The lack of conver-
gence in these analyses suggests that the applica-
tion of this method to this data set is insufficient
to resolve this relationship.

The analyses run without nonmetazoan out-
groups show strong support for a monophyletic
clade of Cnidaria and Bilateria (Table 1). This
evidence contradicts the idea that long-branch
attraction between ctenophores and the outgroup
ismasking a close relationship between ctenophores
and cnidarians (19). Another common miscon-
ception, based on the extremely high evolutionary
rates in the mitochondrial genomes of ctenophores
(29, 30), is that the phylogenetic placement of
these animals is essentially random because of

equally extreme rates of evolution in the nuclear
genomes of ctenophores. We have found instead
that the branch lengths in the phylogenetic analy-
ses of our concatenated protein matrices show
M. leidyi branches to be of similar length to those
ofDrosophila melanogaster, therefore exhibiting
high (but not extreme) amino acid replacement
rates (tables S12 and S13).

The conflict between the maximum-likelihood
and Bayesian analyses of the amino acid matrix
makes it difficult to determine from these analyses
whether Ctenophora or Porifera is the sister group
to the rest of the Metazoa, but there is substan-
tial support for ctenophore as the sister group to
the rest of animals (Table 1). Furthermore, our
results strongly show that Placozoa, Cnidaria,
and Bilateria (that is, ParaHoxozoa) are mono-
phyletic. Given the sensitivity of the molecular
sequence evolution analyses to taxon sampling
and inference method, consistent with other re-
cent analyses (23), we also examined the evolu-
tion of gene content.

We clustered genes by using default param-
eters in OrthoMCL (31) and used these clusters
to construct a gene presence/absence matrix. By
using RAxML with a GTR+G model, we con-
ducted a weighted likelihood-based analysis on

this matrix. We then calibrated sites on the basis
of the congruence of columns to known bilaterian
relationshipswith the “-f u” parameter in RAxML.
The result of this analysis was a tree supporting
Ctenophora as the sister group to all other animals
(Ct,) (Fig. 4) and the rejection of all other alter-
native topologies (in Fig. 2) at the 5% confidence
level by likelihood-based statistical hypothesis
testing (table S14). The pattern of presence and
absence of gene families and signaling pathway
components seen in previous studies is consistent
with these results (32–36). Our reanalysis of an
expanded set of near intron pairs (37) was also
consistent with these results (fig. S2).

Cell Signaling Components in M. leidyi
Across Bilateria, there are seven major cell sig-
naling pathways that play important roles during
embryological development: Wnt, transforming
growth factor–b (TGF-b), receptor tyrosine ki-
nase (RTK), Notch, nuclear receptor, Hedgehog,
and Janus kinase (JAK)/signal transducers and
activators of transcription (STAT) (38). Compari-
sons of nonbilaterian (2–4) and nonmetazoan ge-
nomes (5, 39) show that some of these signaling
pathways evolved before the evolution of animal
multicellularity, others are specific to metazoan
evolution, and some were lineage-specific inno-
vations. The cell signaling components present in
the M. leidyi genome include the RTK family,
which predates the origin of Metazoa (40); the
TGF-b signaling pathway (33), thought to have
evolved in the metazoan common ancestor (39);
and the canonical Wnt signaling pathway (34).
Notably absent from both the TGF-b and Wnt
pathways are the major bilaterian antagonists;
members of the Wnt/PCP (planar cell polarity)
pathway, such as Flamingo and Strabismus, are
not present. Relatively few components of the
Notch pathway (tables S15 and S16) are present,
and many of those lack key diagnostic domains.
M. leidyi also lacks most of the major genes nec-
essary for Hedgehog signaling [for example, the
Hedgehog ligand, the smoothened receptor, and
SUFU (suppressor of fused)]. Last, the JAK/STAT
pathway is most likely a bilaterian innovation be-
cause there are no true JAK orthologs inM. leidyi
or any other nonbilaterians reported to date.

Neural Components in M. leidyi
Ctenophores have a nervous system consisting of
a nerve net, mesogleal fibers, and tentacular
nerves (41). In contrast to the cnidarian nervous
system, which contains an ectodermal and endo-
dermal nerve net, the nerve nets of ctenophores
consist of polygonal nerve cords spread under the
ectodermal epithelium; these nerve nets show
high levels of regional specialization and concen-
trations associated with the apical sensory organ/
polar fields and tentacle bulbs, structures without
clear homologs in any other animal groups (42).
Unlike in cnidarians and bilaterians, immunolog-
ical investigations have failed to detect the pres-
ence of serotonin in ctenophores (43). Ctenophore
nervous systems are also unique in their abundance

Table 1. Support for various hypotheses across 16 phylogenetic analyses. Two amino acid
matrices (Genome Set and EST Set) were analyzed with two different method/model combinations [ML
indicates maximum-likelihood with the GTR+G model using RAxML (27) and Bayes is Bayesian with the
CAT model using PhyloBayes (28)], using four different sets of nonmetazoan outgroups for each analysis
(Opisthokonta are fungi, amoeboids, and choanoflagellates; Holozoa, amoeboids and choanoflagellates;
Choanimalia, choanoflagellates; and Animalia, no outgroups). Columns represent support for tested
hypotheses, and most hypotheses are represented as trees in Fig. 2. In the absence of nonanimal
outgroups, *(Ct,) and (Po,) are concordant with all possible topologies and **(Ct,Po) is the same as (Bi,Cn,Tr).
***Despite an average run time of 205 days per run, none of the Bayesian analyses on the EST data set
converged; convergence was monitored by using the maxdiff statistic generated by the bpcomp program
within PhyloBayes (>0.3).
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Fig. 3. Tree produced by maximum-likelihood analysis of the EST Set. The tree was produced from a matrix consisting of 242 genes and 104,840 amino
acid characters. Circles on nodes indicate 100% bootstrap support. Support placing ctenophores as sister to the rest of Metazoa is 96% of 100 bootstrap
replicates.
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of synaptic connections and their presynaptic
morphology (44).

Many of the genes known to be critical to the
nervous system of bilaterians and cnidarians are
present in the spongeAmphimedon queenslandica,
an animal without a nervous system. It has been
hypothesized that the origin of the nervous sys-
tem in nonsponges coincided with the origin of
a few neural components that are absent from
A. queenslandica (4, 45), but our phylogenetic
results and the absence of these same compo-
nents inM. leidyi challenge this hypothesis. Both
A. queenslandica andM. leidyi contain orthologs
of transcription factors involved in bilaterian and
cnidarian neural development, including lhx (46),
bHLH (basic helix-loop-helix), six, gli, and sox
(classes B, C, E, and F) genes. The neural differ-

entiation RNA binding genes ELAVandMusashi,
as well as the axon guidance genes neurexin,
semaphorin, plexin, and an ephrin receptor, are
all present in both A. queenslandica andM. leidyi.
However, netrin, slit, and unc-5, involved in axon
guidance, are absent from both genomes.

Many of the genes involved in the formation
of bilaterian synapses and neural differentiation are
present in both A. queenslandica andM. leidyi—
but again, sponges and ctenophores lack a similar
set of synaptic scaffolding genes (tables S17 and
S18), all of which are present in cnidarians and
bilaterians (Fig. 5). The pattern of presence and ab-
sence of these scaffolding genes is consistent with
these genes being primitively absent in sponges and
ctenophores. Almost all of the enzymes involved
in the biosynthesis of dopamine and other catechol-

amine neurotransmitters are also absent in both
A. queenslandica andM. leidyi (table S19). An ex-
ception to this shared pattern with sponges is the
presence of two definitive opsin genes inM. leidyi,
but notA. queenslandica, that are expressed in photo-
cytes (light-producing cells), as well as in putative
photosensory cells in the apical sense organ (12).

Mesoderm Components in M. leidyi
Ctenophores have several cell types (such as dis-
tinct muscle cells and mesenchymal cells) that,
in bilaterians, are characteristically derived from
mesodermal tissues. Cell lineage studies (14) have
indicated that these cells are derived from a true
endomesodermbecausemesodermal cells are gen-
erated from precursors that also give rise to the
endodermal portions of the gut; this is similar to the
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Fig. 4. Treeproducedbymaximum-likelihoodanalysis of gene content. The
tree was produced from a matrix consisting of 23,910 binary characters indicating
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produced with default settings of OrthoMCL. Columns consistent with known re-

lationships within Bilateria were up-weighted, whereas conflicting characters were
down-weighted. Thematrix was analyzed with RAxML under the GTR-G model of rate
heterogeneity. All nodes received 100% bootstrap support. Constraining known
relationships did not affect the position of Ctenophora (fig. S4).
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endomesodermal origins of mesoderm in virtually
all bilaterians. However, screening the M. leidyi
genome reveals a surprising result in that almost
none of the genes involved in bilaterianmesoderm
development can be found (Fig. 6 and tables S20
and S21). Functional components of the fibroblast
growth factor, Notch, Hedgehog, and the nodal
(TGF-b superfamily) pathways, all of which are
important in the segregation of mesoderm in dif-
ferent bilaterian forms, are also not observed.Other
genes known to be involved in bilaterian meso-
derm development, such as gli/glis genes, are ex-
pressed in neural (but not mesodermal) cells in
M. leidyi (47).

Mesoderm and Neural Components Also
Absent from Other Ctenophores
To test whether these absences from theM. leidyi
genomewere true for other ctenophores,we searched
the deeply sequenced transcriptomes of seven
other ctenophore species (Bathyctena chuni,
Beroe forskalii, Charistephane fugiens,Euplokamis
dunlapae, Hormiphora californensis, Lampea
lactea, and Thalassocalyce inconstans) for FGF
(fibroblast growth factor), Hedgehog, nodal, twist,
snail, Lbx,NK4,NK3,NK2,Myf5,Noggin,Mrf4,
Myogenin, Eomesoderm, GATA, MyoD, and
troponin. We were able to identify putative snail
genes in T. inconstans and E. dunlapae and pu-
tative GATA genes in five of the seven species.
We were unable to identify the other 15 missing
genes in any of these ctenophore transcriptomes
(tables S22 and S23). A phylogenetic analysis of
ionotropic glutamate receptor sequences from
M. leidyi and these ctenophore transcriptomes
suggests that the ctenophore receptors form a
sister clade to the bilaterian glutamate receptors
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(fig. S3). Ionotropic glutamate receptors are ab-
sent from A. queenslandica but are present in the
transcriptomes of eight other sponges (48). The
tree topology suggests that the ctenophore se-
quences descended from an ancestral glutamate
receptor that differentiated into AMPA, NMDA
(N-methyl-D-aspartate), kainate-type, and delta2-
like glutamate receptors after ctenophores diverged
from the rest of animals. These results indicate
that, within ctenophores, themajority of absences
are not specific to the M. leidyi lineage, but that
there are some intriguing differences in gene con-
tent between ctenophores themselves.

Discussion and Conclusion
The sequence of theM. leidyi genome has given
rise to multiple categories of evidence that sup-
port the placement of ctenophores as the sister
group to all other animals, a conclusion supported
by phylogenetic analysis of amino acid matrices
from concatenated protein sequences. However,
these analyses are sensitive to taxon sampling
and phylogenetic methods and, therefore, provide
some support for alternative hypotheses. With a
ctenophore genome in hand, we show that gene
content data support Ctenophora as the sister
group to all other animals and statistically reject
competing hypotheses. It will be important to test
this result once more genomic data are available
fromother ctenophores, sponges, and other relevant
groups. Nevertheless, this result is congruent with
the structure and inventory of a variety of gene
families and signaling pathways, as well as genes
essential to neural and mesodermal cell types.

It appears that much of the genetic machinery
necessary for a nervous systemwas present in the
ancestor of all extant animals. This pattern suggests
that a less elaborate nervous system was present in
the metazoan ancestor and was secondarily re-
duced in placozoans and sponges. The alternative
is that neural cell types arose independently in both
the ctenophore lineage and the lineage that led to
cnidarians andbilaterians,whichmight explain some
of the unique aspects of the ctenophore nervous
system. Resolving these alternative hypotheses will
require functionally characterizing the nervous
system–related genes in ctenophores and sponges.

Like the nervous system, the mesoderm ap-
pears to have had a complex evolutionary history.
Our results are consistent with several alternative
hypotheses. One possibility is that the mesoderm
was present in the most recent common ancestor
of ctenophores and bilaterians but was lost in
sponges, placozoans, and cnidarians. However,
given the absence of themajority of genes involved
in the specification and differentiation of the
bilaterian mesoderm from the M. leidyi genome,
it appears more likely that ctenophores indepen-
dently evolved mesodermal cell types after they
diverged from the rest of animals. This interpre-
tation is compatiblewith a recent report that striated
musculature evolved independently in bilaterians,
cnidarians, and in the ctenophoreE. dunlapae (49).

The implications of these findings go well be-
yond the rearrangement of the branches of themeta-

zoan tree of life, arguing for a newway of thinking
regarding the emergence and/or conservation of
what heretofore were considered to be unique
and indispensible biological features. Likewise,
theories on the evolution of animalmulticellularity
have to be reevaluated. This evolutionary frame-
work, along with the comprehensive genomic
resources made available through this study, will
undoubtedly yield myriad new discoveries about
our most distant animal relatives, many of which
will shed new light not only on the biology of these
extant organisms but also on the evolutionary
history of all animal species, including our own.

Methods

Genome Sequencing and Assembly
We isolated genomic DNA from the embryos of
a self-fertilized adult and sequenced this DNA
with Roche 454 sequencing. We generated anoth-
er pool of genomic DNA from the embryos of a
second self-fertilized adult and sequenced this DNA
using Illumina GA-II mate-pair sequencing. These
data were assembled using the Phusion assembler
(24).We have deposited the assembly at GenBank
under the project accession AGCP00000000.

Transcript Sequencing and Assembly
We isolated RNA frommixed-stageM. leidyi em-
bryos and sequenced this material using Illumina
GA-II sequencing. We assembled these data into
transcripts using Cufflinks (50) and Trinity (51).
Assembled transcripts are available through the
MnemiopsisGenomeProject Portal (http://research.
nhgri.nih.gov/mnemiopsis/).

Gene Prediction
We generated gene model predictions using a
range of gene prediction programs and then used
EVidenceModeler (EVM) (52) to combine mod-
els, transcripts, and sequence similarity to other
protein data sets into a final set of protein-coding
gene predictions. These are available through
the Mnemiopsis Genome Project Portal (http://
research.nhgri.nih.gov/mnemiopsis/).

Phylogenetic Analysis of Concatenated
Gene Matrices
We analyzed two matrices constructed from con-
catenated protein sequences. One consisted of
M. leidyi amino acids added to a genome-based
datamatrix thatwas reported in theA. queenslandica
genome paper (4). The second used a phenetic
sequence clustering method as described previ-
ously (18). We generated maximum-likelihood
trees with the GTR+G model using RAxML (27)
and Bayesian trees with the CAT model using
PhyloBayes (28). All alignments and trees are avail-
able at http://research.nhgri.nih.gov/manuscripts/
Baxevanis/science2013_supplement/.

Phylogenetic Analysis of Gene Content
We assembled a presence/absence matrix of gene
clusters and analyzed these data with RAxML
under the GTR-gamma model of rate heteroge-

neity. We used known bilaterian relationships to
generate a weight matrix in RAxML. We used
per-site log likelihoods generated in RAxML as
input to CONSEL (53) to generate P values for
alternative hypotheses.
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